
Semantic Remote Attestation:
A Virtual Machine Directed 

Approach to Trusted Computing

Vivek Haldar
Deepak Chandra
Michael Franz

Information and Computer Science
University of California, Irvine



Outline

● Quick Trusted Computing primer...
● ... and what's wrong with it
● How virtual machines can make Trusted 

Computing more “secure”, flexible and 
effective



Background: Gaining Trust

● Trust – assurance that system is doing what I 
want it to do, properly

● Kinds of systems:
– Closed: trusted because of a trustworthy 

manufacturer, and closed interface – e.g. Game 
consoles, ATMs

– Open: not trusted at all, no central arbiter – e.g. 
PCs, PDAs

● Question: can we bring the notion of “trust” to 
open systems?



Enter: Trusted Computing

● Trust = Integrity + Authenticity
● Integrity: the program/system was not changed 

or tampered with
● Authenticity: verifying credentials, or identity, 

of a person, thing, or program
● Trusted Computing: add components and 

mechanisms to open systems to provide “trust”
– This component is a Trusted Platform Module (TPM) 

that is tamper-resistant and has an embedded 
private key



Integrity: Secure Boot Process

● Goal: make sure you're only 
booting off “trusted” software
● At every level:
● Compute hash of level above
● Compare with stored 
signature of hash of original 
software
● Then transfer control

Diagram by Arbaugh et al



Authenticity: Remote Attestation

● Goal: a remote party wants to know what 
software I'm running before it'll talk to me

● It asks me for my integrity metrics
● The trusted module signs my integrity metrics, 

which I send to the remote party
● The remote party verifies the digital signature
● This integrity metric is just the signed hash of 

the executable image!



Problems with remote attestation

● Says nothing about program behavior
● Static, inexpressive and inflexible
● Upgrades and patches?
● Heterogeneity of devices/platforms?
● Revocation



Program behavior not attested

● Remote attestation certifies what particular 
binary is running on a remote machine

● Attested programs can be insecure, or have bugs
● Most vendors will attest their programs regardless
● Assurances about program behavior – “because 

vendor says so, and he signed it”
● Trust vs Security

– Trust – identity, certification
– Security – behavior, verification, enforcement



Remote attestation is static

● Cannot convey dynamic information 
– Runtime state of program
– Properties of program input

● One time operation done at the beginning of 
a network transaction/protocol



Upgrades and patches?
● Verifier needs an “approved list” of software
● Most software has a steady stream of patches and 

upgrades

– Can be applied in any order, some may not be 
applied

– Exponential blowup in “version” space
● Creates problems at both ends of the network

– Servers need to manage intractable list
– Clients may need to hold off on 

upgrades/patches



Accommodating platform 
heterogeneity
● Wide variety of computing platforms

– Popularity of cross-platform solutions like Java 
and .NET

● Standard remote attestation certifies 
specific binaries

● Just as with patches and upgrades, 
intractable to manage programs across 
various platforms



Some questions

● How to remotely attest relevant program 
behavior, while allowing a range of 
implementations?

● Stuck with lop-sided network model
– A lot (most?) work done on untrusted clients
– All the trust still resides at the server
– How can we partition trust more flexibly?

● How to reconcile security and trust?



Virtual machines and remote 
attestation

● Goal: attest behavior, not a particular 
executable image

● Two observations:

– VMs that execute high-level, platform-
independent code have a lot of meta-
information about code – e.g. Class hierarchy

– Code runs under complete control of a virtual 
machine



Semantic Remote Attestation

● Use a trusted virtual machine (TrustedVM)
to attest properties of code running on it

● This is a much more fine-grained and 
semantically richer operation than signing 
the hash of an executable – semantic 
remote attestation



What can a TrustedVM attest?

● Properties of classes – class hierarchies, 
restricted interfaces

● Dynamic properties – runtime state of 
program, information about input; install 
runtime monitors

● System properties – testing system abilities 
before running distributed computations

● In general, send code to TrustedVM to 
evaluate properties; test suites, static 
analyses



`

Client with TrustedVM Server

Client
application

Server
application

TrustedVM 
Attestation

Service

Attestation
Requester

Enforcement Mechanism

Framework for Semantic Remote 
Attestation



Semantic Remote Attestation: 
Examples
● Peer to peer networks

– Depend on each client respecting the rules of the 
protocol

– With semantic remote attestation, can explicitly 
check security requirements

● Distributed computation – e.g. Mersenne Primes
– Want to test a platform's capabilities

● Before handing over a computation bundle
● To evaluate “goodness” of results



False response:
Non-existent files

Peer Malicious 
Peer

Request:
names of shared 
filesPeer

T
ru

s
te

d
V

M

Malicious 
PeerConstraint:

check response with
file names of shared
files that exist

Runtime monitor
Request:
names of shared 
files 

Peer
Malicious 
Peer

Response: only 
shared files that
actually existPeer

T
ru

s
te

d
V

M

Malicious 
Peer

Runtime monitor

Example: P2P in a TrustedVM

Existing P2P P2P in a TrustedVM



Advantages of semantic remote 
attestation

● It certifies program behavior – not a 
specific binary

● Allows various implementations, as long as 
they satisfy required security criteria

● Dynamic – can attest runtime properties
● Flexible – can attest wide range of 

properties



Advantages of semantic remote 
attestation

● Trust relationships between nodes are made 
explicit

● These are actually checked and enforced
● Finer-grained trust: Degree of 

trustworthiness – 
– can know which properties were not satisfied – 

traditional attestation is all-or-nothing
– Allows nodes to dynamically adjust trust 

relationships



In the works...

● Ways to attest information flow – both 
statically and dynamically
– Statically – static analysis of Java bytecode – 

results can be easily checked
– Dynamically – Mandatory Access Control (MAC) 

at the object-level inside the JVM
● Simulator for TCPA hardware module

– Understand (debug?) the TCPA spec
– Research vehicle for TC research



Conclusion

● Currently proposed mechanisms for Trusted 
Computing are severely limited

● Leveraging virtual machine technologies can 
make Trusted Computing more flexible and 
effective



Thank You

Interpreters, Virtual Machines and 
Emulators (IVME) 2004
(co-located with PLDI)

June 7, 2004, Washington, DC

http://www.ics.uci.edu/~franz/ivme


